
Goals and Deliverables
for Databases

Norm Buchanan (CSU) and Paul Laycock (BNL)

1

DUNE Data Model Workshop, BNL
Aug 15, 2019

Common Terms

2

Non-event data (Metadata) – dump it in a database, usually

Conditions data

• All of the rest of the data we have to worry about
• Examples: Run configuration/history, HV values, beam conditions,

calibrations
• Needed for several use cases, distinguish between data processing and

other use cases

• The subset of non-event data needed to reconstruct event data
• Some of this is in the file (because the granularity is ~the same)
• Some of this is in a database – the Conditions DB
• Sources can be (aggregated) non-event data from the superset

Event data – dump it in a file
• The stuff that DAQ reads out from the detector
• Examples: detector signals

Requirements

3

Above all we need to know use cases and requirements

“Given a run and event number, give me the name of the Analysis
Output Data file (or even download that file)”

Frequency? (rare), Latency? (minutes)

“HV values”
Be more specific, what are the use cases, read/write rates

and sizes:
Human querying HV values in quasi-real time
DQM
Posteriori detector debugging, history plots et al
Data processing on distributed computing resources

Goals

4

Focus here on DBs most closely related to data model
• Run configuration/history DB
• Calibration DB
• Beam instrumentation DB (IFBeam)

Definition of scope: (Aim of the DB group)
• To provide the DB infrastructure to support construction, operations

and offline data processing

• Have infrastructure with well designed interfaces that support cross-
querying between the DBs – requires cross-coordination with
Metadata group

• Slow controls DB (define rate requirement)

Goals – Conditions Database

5

Conditions DB (fed by other DBs for offline use (eg. reconstruction)
• Belle2 approach seems reasonable and similar to that used for runs

config/history DB (separate “payload” from metadata)

• One generic metadata schema, no need for each use case to
generate a schema, and it can easily evolve

• Basic design
• Payloads are BLOBS, subsystems are responsible for

serialising and deserialising
• Upload to conditions DB with metadata, i.e. which

version is this, and what is the interval of validity?
• Conditions DB relates versions of different subsystems

into one “global tag” = job configuration

Interfaces

6

Currently no specific interface documents exist beyond the
generic hardware – computing document.

Need to define the following interfaces:

• DAQ – DB – started yesterday!
• CISC – DB – needs a dedicated meeting
• Calibration – DB – decide on design today
• Beam Instrumentation – IFBEAM DB

• Hardware groups – DB – Panic!

• No time at this meeting to attack this, but this must be part
of the R&D request as it’s probably the most urgent need!

• Data Discovery – Metadata DB – started yesterday!

Deliverables

9

• Today: Decision on approach for conditions DB

• 2019: Use cases from all communities

• Timeline with milestones for requirements

We will need to hold a DB-centric workshop sometime over
the next few months.

• Agreement the conditions DB structure at least

• Interface documents – requires cross-coordination
with Metadata

Belle II Conditions Database
Paul Laycock for the BNL Belle II team

Conditions data and use cases
• Use case: operations

• We need to write lots of information about the experiment hardware: voltage, temperature,
current…

• That data is crucial for operations: identifying and diagnosing problems
• Write rates are high (Hz * channels * detectors), read rates are low
• The users are usually experts or shifters using a monitoring client to show trends

• Time Series Databases can be good solutions for slow control monitoring
• Data Quality Monitoring can be similarly well served by Time Series DB

• Use case: reconstruction
• A subset of the operations information above may be needed for event reconstruction
• Other non-event data are also needed during reconstruction: calibrations and alignment,

accelerator parameters…
• Write rates are low, read rates can be tens of kHz
• The user is a (distributed) computing system, which can mean many thousands of nodes

trying to access the same data at the same time
• Caching is essential

"2

ATLAS Conditions Data experience
• Schematic of current ATLAS infrastructure, based on COOL on the client-side

• COOL was an LCG project: http://lcgapp.cern.ch/project/CondDB/COOL_2_1_0/
• ATLAS used it for all use cases, and consequently it became very complicated
• COOL designed to work with multiple backends, but the ATLAS solution ended up

tightly coupled to the s/w framework
• Complicated schema defined, and then expertise disappeared quickly

• Much DBA effort needed to make oracle queries performant and performance really
relies on a powerful oracle backend, much s/w framework service expertise needed to
make service performant

• Frontier caching layer absolutely required to avoid making (complicated) queries to the
DB, which in turn made Frontier complicated

"3

Event processing

Relational
DB

Software
Framework

Coral
CoralFrontier

Cool

Tomcat

Frontier

JDBC

WEB

SQUID cache

http://lcgapp.cern.ch/project/CondDB/COOL_2_1_0/

Conditions data access - Best practice
• Part of HEP Software Foundation Community White Paper effort, a Conditions Data

working group attempted to define best practice
• https://arxiv.org/abs/1712.06982

• Main lesson learned, particularly from ATLAS: separating the two use cases is crucial
• Force operations to use system optimised for reconstruction: compromise operations
• Force reconstruction to use a system designed for operations: compromise physics

• ATLAS still cannot efficiently run event overlay in simulation as it kills the database

• Several LHC and non-LHC experiments converged on the same design for the
reconstruction use case:

• Convention: the data in the reconstruction use case is conditions data
• CMS and Belle II designs are very close to best practice
• ATLAS are working out how to migrate to it for Run 3

"4

https://arxiv.org/abs/1712.06982

Conditions@REST

• REST communication (http) between client and server
• Ensures simple interfaces
• Service deals with serialised data, experiment and subsystem agnostic
• Keep the database uncomplicated, minimise the effort

• Benefit from industry-standard solutions
• Loose coupling to allow component upgrade and replacement

"5

Conditions Metadata
• Metadata Model: relational DB

• Single tables for payload,
tags, IOVs
• Payloads factorised from

metadata
• No need to define a

schema per subsystem,
it’s just a BLOB

• IOVs and payloads resolved
independently:
• Cache-friendly design

"6

Belle II Conditions Database
• Containerised component architecture

• Highly scalable, excellent
experience for Belle II phase 3

• Industry-standard components
• REST interfaces
• Swagger auto-generated API

• Payloads entirely factorised

• Good performance, stress-tested beyond
expected Belle II requirements

• Largely experiment independent
• Could be used for DUNE with

modest effort

"7

Interfaces – Conditions DB

7

The Conditions DB has to solve several problems:
Two dimensions:

Time (interval of validity, IOV) – conditions vary with time
Versions – we may improve some conditions (calibrations)

Separate configuration from software
Do NOT specify versions of each condition in the software
Instead use a relational DB to resolve a global conditions

configuration (global version) to a Version for each condition type
This Version resolves to a set of IOVs

Reproducibility + mutable futures
During data-taking, you want to be able to update the future

while safe-guarding the past (forgotten by Belle II)

• Job Config: Global tag, e.g. “DUNE-REPRO-01”
• S/w framework: ConditionsSvc->Get(“APA1”, evt->RunNr())

8

noSQL in DUNE

Maxim Potekhin

08/15/2019

M Potekhin | DUNE Data Model Workshop, August 2019

Motivations

• M. Kirby: “Specify R&D projects that need investment going forward”

• noSQL can be a very efficient tool in many situations
• cf. CMS data aggregation system
• successful prototype of the PanDA Monitor based on Cassandra (built at BNL)
• STAR RTS (MongoDB)
• noSQL storage was used in protoDUNE DQM to accomodate a variety of physics

application in a single database and a unfied Web interface
• ...many other examples

• still usage of noSQL in HEP lags behind industry
• inertia and prior heavy investment in RDBMS

• Note that this is not a “bleeding edge” technology but by now rather standard and well
understood

• for example a variant of noSQL is built into Postgres (hstore, JSON etc)

• potential benefits for DUNE are worth the effort to explore and prototype such systems
for select use cases

2

M Potekhin | DUNE Data Model Workshop, August 2019

Features of interest in various noSQL systems

• Fast key-value storage

• Transparent replication and redundancy in a few noSQL solutions

• “flexible schemas” i.e. JSON-like storage

• Both map well on certain use cases in HEP
• e.g. key-value can be used for file lookup in column-wise data design presented by

Brett
• key-value will work well in the Conditions Database (after looking at a modern

example e.g. Belle II)
• schema-less storage is great for DQM
• run database, slow controls etc
• ...same goes for the hardware database in DUNE

• this DB was discussed at the Collaboration Meeting at CERN

3

M Potekhin | DUNE Data Model Workshop, August 2019

Potential R&D

• Hardware DB

• Conditions DB

• File lookup for event stitching

• DQM is a minor use case and can be addressed later

4

Main Lesson Learned from protoDUNE

9

Well-developed interfaces are needed well in advance of the
implementation of databases – this requires planning on both sides
of the interface

The infrastructure (hardware/software) was not the bottle-neck for
having the databases implemented

• Personnel were busy commissioning the detector which made
communications between the DB group and experts with needed expertise
difficult.

• A significant lack of personnel in the DB group was an additional difficulty –
still exists

Most important – requirements are needed – NOW.
• Global and Individual-DB-specific

Current list of run history parameters (RDB)

10

Run number – int (row key)
Start/Stop Time
Components – (bit mask) long int
DAQInterface_commit – string
Gain – int
baselineHigh – int
amp_max – int
amp_min – int
amp_step – int
mode – string
phase_max – int
phase_min – int
phase_step – int
step_time – int
All_i1_window – int
All_i2_window – int
All_m1_window – int
All_m2_window – int

